

Abstract
jp is a standalone, command-line tool used to extract

change log journal entries from Windows NTFS volumes.

From this journal, one can extract: (a) time of change to a

file/directory and (b) change type (eg. deleted, renamed,

size change, etc). jp can operate on a live volume, an

image of a volume or an extracted change log journal. All

artifacts can be outputted in one of four parsable formats

for easy inclusion with other forensics artifacts. jp runs on

Windows, Linux and Mac OS-X.

Copyright © TZWorks LLC

www.tzworks.net

Contact Info: info@tzworks.net

Document applies to v1.32 of jp

Updated: Sep 22, 2018

TZWorks® Windows Journal
Parser (jp) Users Guide

http://www.tzworks.net/
mailto:info@tzworks.net

Copyright © TZWorks LLC Sep 22, 2018 Page 1

Table of Contents

1 Introduction .. 2

2 Change Log Journal Format/Internals ... 2

3 How to Use jp .. 5

3.1 Processing Volume Shadow Copies .. 6

3.2 Including old entries from Unallocated Clusters .. 7

3.3 Including old entries from Volume Shadow Clusters and Slack space ... 7

3.4 Available Output Options .. 7

3.4.1 CSV Output .. 8

3.4.2 Time resolution and Date format ... 9

4 Change Journal Reason Code .. 9

5 Known Issues ... 11

6 Available Options .. 11

7 Authentication and the License File .. 13

7.1 Limited versus Demo versus Full ƛƴ ǘƘŜ ǘƻƻƭΩǎ hǳǘǇǳǘ .ŀƴƴŜǊ .. 14

8 References .. 14

Copyright © TZWorks LLC Sep 22, 2018 Page 2

4:7ÏÒËÓ΅ #ÈÁÎÇÅ,ÏÇ *ÏÕÒÎÁÌ 0ÁÒÓÅÒ ɉÊÐɊ
5ÓÅÒÓ 'ÕÉÄÅ

Copyright © TZWorks LLC

Webpage: http://www.tzworks.net/prototype_page.php?proto_id=5
Contact Information: info@tzworks.net

1 Introduction

jp is a command line tool that targets NTFS change log journals. The change journal is a component of

NTFS that will, when enabled, record changes made to files. The change journal is located in the file

$UsnJrnl within the alternate data stream $J. Each entry is of variable size and its internal structure is

documented by Microsoft via the reference [1].

The change journal will record, amongst other things: (a) time of the change, (b) affected file/directory,
and (c) change type (eg. delete, rename, size, etc). This metadata is useful tool when looking at a

computer forensically.

Microsoft provides tools to look/affect the change journal as well as a published API to

programmatically read from/wr ite to the change log. jp however, doesn't make use of the Windows

API, but does the parsing by traversing the raw structures. This allows jp to be compiled for use on other

operating systems to parse the change journal as a component in a forensic toolkit.

Currently there are compiled versions for Windows, Linux and Mac OS-X.

2 Change Log Journal Format/Internals

Just because one may have an NFTS volume does not mean that a Change Journal exists on that volume.

In fact, with Windows XP, the Change Journal was not active by default. An application or a user could

enable one, but short of that happening, it would not be present. Starting around with Windows 7, the

change log Journal was active on the system drive by default. Other volumes, however, do not

necessarily have the change log journal instantiated.

To check whether the NTFS volume you are analyzing has this type of journal, one can use the built-in

Microsoft tool fsutil. The functionality we are interested in is the USN option. The USN abbreviation

stands for Update Sequence Number (USN) Journal. In Microsoft documentation, the USN Journal is

also known as the Change Journal. In this document, both terms will be used interchangeably. When

invoking the USN option in fsutil, the Microsoft utility shows what USN commands are supported (see

below):

mailto:info@tzworks.net

Copyright © TZWorks LLC Sep 22, 2018 Page 3

In this case, we are interested in finding out whether a Change Journal is present on a volume we wish

to analyze. One does this via: fsutil usn queryjournal <volume letter> (see below). If the volume contains a

USN Journal, then the statistics regarding the journal are displayed.

If a USN Journal is not present, the following error message is displayed

To find the change journal, one needs to look into the root directory of the volume under analysis.

Buried within one of the hidden system files, is an alternate data stream containing the change log

journal. Specifically, the journal data is located at the [root]\$Extend\$UsnJrnl:$J, where the $J is an

alternate data stream. Looking at this location with an NTFS viewer (shown below), one can easily drill

down to the proper location and analyze the contents. When examining the cluster run for the $J data

stream, one will see the beginning clusters are sparse, meaning they are not backed by physical disk

clusters, while the later clusters are not sparse (meaning they have physical clusters assigned to them).

For the example below, there are 2,197,312 (or 0x218740) clusters that are sparse and only 8304 (or

0x2070) clusters have data in them.

Copyright © TZWorks LLC Sep 22, 2018 Page 4

The data within the change journal is a series of packed entries. Each entry is called a USN_RECORD

structure which is defined in the Microsoft Software Development Kit (SDK). This structure is shown

below as documented by the SDK:

While jp extracts all the data from each record, it outputs the following fields: (a) FileReferenceNumber

(also referred to as MFT entry or inode for the file or directory), (b) ParentFileReferenceNumber (which

is the parent inode), (c) Usn number (which translates to the offset within the data stream), (d)

TimeStamp (UTC date/time when the record was entered), (e) Reason (what change occurred to the file

or directory that caused a journal entry), (f) FileAttributes, and (g) Filename. jp can also pull data from

the $MFT and other sources to provide a clearer picture of where the entry came from in the filesystem

and other timestamps associated with the entry. This will be discussed in later sections.

Copyright © TZWorks LLC Sep 22, 2018 Page 5

3 How to Use jp

For live extraction and analysis, the jp tool requires one to run with administrator privileges; without

doing so will restrict one to only looking at previously extracted change log journals. One can display

the menu options by typing in the executable name without parameters. A screen shot of the menu is

shown below.

From the menu above, there are three primary data source options: (a) input from an extracted journal

file, (b) a dd image of a volume or disk, and (c) a mounted partition of a live Windows machine. jp can

handle each equally well. The latter two, however, actually can yield more data. Specifically, by

allowing jp to look across an entire volume, it can cross-reference the MACB timestamp data from INDX

slack space when analyzing deleted entries. Secondly, jp can analyze older journal entries that have

been deleted. There are 3 sets of options that can find these entries

(see -include_unalloc_clusters, -include_vss_clusters and -include_slack_space).

All the data source options allow one to reconstruct the parent path of the journal entry, using
the -show_dir_path switch. This is useful for identifying where the target file or directory was from. As a
separate option, jp allows one to explicitly point to a $MFT exported file to use for path reconstruction
(ref: -mftfile <$MFT file>). If jp points to a volume (via the -partition option) or an image (via the -image

option), then the tool will use the associated embedded $MFT file to extract the necessary metadata,
however if an external $MFT is provided via the -mftfile switch, then the external $MFT file will take
precedence.

Copyright © TZWorks LLC Sep 22, 2018 Page 6

The $MFT file is also useful for extracting standard information MACB times that are related to the

journal entry. This can be done via the -pulltimes option. Normally, this option just pulls the MACB

times from the appropriate $MFT entry. However, if there is no $MFT entry, jp will perform additional

ŀƴŀƭȅǎƛǎ ŀƴŘ ǎǘŀǊǘ ƭƻƻƪƛƴƎ ŀǘ ǘƘŜ ǎƭŀŎƪ ǎǇŀŎŜ ƻŦ ǘƘŜ ǇŀǊŜƴǘ ŘƛǊŜŎǘƻǊȅΩǎ Lb5· ǊŜŎƻǊŘǎ ǘƻ ǎŜŜ ƛŦ ƛǘ Ŏŀƴ ŦƛƴŘ ŀ

matching entry. If it finds a matching entry it will extract the MACB timestamps from the slack and

report it in the output as deleted/wisp, to indicate it used the TZWorks wisp engine to extract the

results.

The term wisp refers to another TZWorks tool that targets INDX slack entries. Some functionality of the

wisp tool was added to jp and hence the term used in the output. The wisp engine portion of jp,

however, only works if it has access to the entire volume when doing its analysis.

3.1 Processing Volume Shadow Copies

For starters, to access Volume Shadow copies, one needs to be running with administrator privileges.
Also, Volume Shadow copies, as is discussed here, only apply to Windows Vista up to Win10. It does
not apply to Windows XP.

There are 2 options available to pointing to the change log journal on a Volume Shadow. The first

option follows the format of the other tools and uses the built in shortcut syntax to access a specified

Volume Shadow copy, via the %vss% keyword. This internally gets expanded into

\ \?\GLOBALROOT\Device\HarddiskVolumeShadowCopy. Thus, to access index 1 of the volume shadow

copy, one would prepend the keyword and index, like so, %vss%1 to the normal path of the hive. For

example, to access a System hive located on HarddiskVolumeShadowCopy1, the following syntax can be

used:

 jp -file %vss%1\ $Extend\ $UsnJrnl:$J > results.txt

The second option uses the option is much easier and uses the -vss <index of Volume Shadow> syntax.

Below yields the same result as the first one above.

jp -vss 1 > results.txt

To determine which indexes are available from the various Volume Shadows, one can use the Windows

built-in utility vssadmin, as follows:

 vssadmin list shadows

To filter some of the extraneous detail, type

 vssadmin list shadows | find /i "volume"

While the amount of data can be voluminous, the keywords one needs to look for are names that look

like this:

 Shadow Copy Volume: \ \ ?\ GLOBALROOT\ Device\ HarddiskVolumeShadowCopy1

 Shadow Copy Volume: \ \ ?\ GLOBALROOT\ Device\ HarddiskVolumeShadowCopy2

Copyright © TZWorks LLC Sep 22, 2018 Page 7

 ...

From the above, notice the number after the word HarddiskvolumeShadowCopy. It is this number that

is passed as an argument to the previous options.

3.2 Including old e ntries from Unallocated Clusters

Starting with version 1.18, if one wants to scan all the unallocated clusters, one can issue the
option: -include_unalloc_clusters, in combination with one of these options: -image, -partition or -vss.

Using the -include_unalloc_clusters option, jp will first scan the normal $UsnJrnl:$J location and
then proceed to scan all the unallocated clusters for old change log entries. The output will be
annotated with another column titled "unalloc" to specify which change log entry was found in
the unallocated cluster section and which was not.

Originally we thought this would be more difficult than it was, since the change log journal
doesn't have a magic signature per se. So using some customized fuzzy logic, we added the
option to scan unallocated clusters and pull out old change log journal entries. After some quick
tests, surprisingly, there are a number of entries that are available and can be extracted
successfully. We tried to tune the scanning to minimize false-positives at the expense of missing
some valid entries. While this adds a useful option, it should be considered experimental.

For those analysts that would like to verify these entries, one can use the -show_offset option. This will

instruct jp to show the volume offset of where the entry came from. Then one can manually review and

validate those entries with a hex viewer.

3.3 Including old entries from Volume Shadow Clusters and Slack space
Starting with version 1.24 and 1.25, one the options -include_vss_clusters and -include_slack_space were

added respectively. Both options are carving options, in that they look for USNJRNL signatures as the

precursor to parsing. They can be used together and in conjunction with the -include_unalloc_clusters to

maximize the number of USNJRNLs in a specified volume.

3.4 Available Output Options

There are four output format options available, ranging from: (a) the default CSV output, (b) XML

format, (c) Log2Timeline format, and (d) Bodyfile format defined by the Sleuth Kit. The default option,

at this time, yields the most data per record and provides the more verbose data. Specifically, the

additional timestamp data is only displayed with the default option. The Log2Timeline is geared for

timeline analysis.

When analyzing the change log journal data, one can view only those records that have been closed.

Closed, here, means the journaling entry was completed and recorded successfully. This is the default

ƻǳǘǇǳǘΦ LŦ ƻƴŜ ǿŀƴǘǎ ǘƻ ǎŜŜ ΨŀƭƭΩ ǘƘŜ ǊŜŎƻǊŘǎΣ ƻƴŜ Ŏŀƴ ǳǎŜ ǘƘŜ -a switch. This will yield a lot of

Copyright © TZWorks LLC Sep 22, 2018 Page 8

ǊŜŘǳƴŘŀƴǘ Řŀǘŀ ǎƛƴŎŜ ƛǘ ǿƛƭƭ ǎƘƻǿ ǘƘŜ ƧƻǳǊƴŀƭ ŀŎǘƛƻƴ ōŜŦƻǊŜ ǘƘŜ ΨŎƭƻǎŜŘΩ ŀŎǘƛƻƴ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ ΨŎƭƻǎŜŘΩ

action.

3.4.1 CSV Output

As stated earlier, the CSV default option yields the most data. These fields are best described by a

picture of the output. For this example, the default option CSV option was used and by looking at the

column headers, one gets a good idea of the fields that can be extracted from each journal entry.

When using path reconstruction and adding times to the output, the data can make a long record. For

this example, we display the same entries as the above example, but broke it up into two screenshots.

The first image is the same as the one above, and the second image (below) is the extra data that shows

the path reconstruction and timestamps, if they were available.

To make the example more interesting, we targeted a journal record that was deleted and jp was able to

extract information about the deleted entry from the slack data of the parent dƛǊŜŎǘƻǊȅΩǎ INDX record.

The wisp recovered entry is highlighted in the figure.

During any path reconstruction, where there are deleted entries and old inode numbers have been

recycled into new directories and/or files, there exists the issue of handling false positives. Therefore,

starting with version 1.09, jp looks at both the inode and sequence number to determine if there is a

match (for both the parent and target entry). To try to make it clearer to the analyst, the following data

is annotated using the nomenclature in the table below to each entry.

Copyright © TZWorks LLC Sep 22, 2018 Page 9

Name Meaning

valid Journal entry found in $MFT

del/entry Journal entry not present in $MFT, but parent entry was

del/parent WƻǳǊƴŀƭ ŜƴǘǊȅΩǎ ǇŀǊŜƴǘ ƴƻǘ ǇǊŜǎŜƴǘ ƛƴ ϷaC¢

del/wisp Journal entry not present in $MFT, but parent entry was and wisp engine was able to
extract a matching Journal entry inode/sequence number pair.

3.4.2 Time resolution and Date format

Another feature is the ability to change the date and/or time format to conform to whatever standard

that is desired, with a few restrictions. The time format allows one to show as much (or as little)

precision that the Windows native FILETIME allows, which is documented to have a resolution of 100

nanoseconds.

Since the FILETIME format allows for 100 nanosecond resolution, one can display this resolution if

desired. The -timeformat field allows one to throttle this by just adding more xΩǎ ǘƻ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ

template argument (hh:mm:ss.xxx). This becomes more important when you want to determine the

order of events when they are closely aligned in time, as is the change journal entries.

Also shown in the example, is the ςdateformat was used to modify the default mm/dd/yyyy format to a

dd/mm/yy format.

4 Change Journal Reason Code

When looking at the type of change (or reason code) that caused the journal entry, there are 21

possibilities. Each possibility is enumerated below along with how it is mapped to jp.

